How the Golden Ratio Relates to Resonance and Bandwidth

K is the Golden Ratio constant in respect to a resonant frequency and it's Bandwidth

(Pedagogy)

$$n = \sqrt{(n * K) \left(\frac{n}{K}\right)}$$

(Frequency of Resonance)

$$fresonance = \sqrt{fc \ upper * fc \ lower}$$

$$fc upper = fr * K;$$
 $fc lower = \frac{fr}{K}$

$$fr = \sqrt{(fr * K) \left(\frac{fr}{K}\right)}$$

(Bandwidth)

$$Bw = fc upper - fc lower$$

$$Bw = (fr * K) - \left(\frac{fr}{K}\right)$$

Solve for K:

The "+" in the radical part of the quadratic formula is from 4a(-c)

$$\begin{cases} Phi = K = \frac{\sqrt{Bw^2 + 4 fr^2} + Bw}{2 fr}, & F \neq 0 \text{ and } \frac{B + \sqrt{4 F^2 + B^2}}{2 F} \neq 0 \\ -\left(\frac{1}{Phi}\right) = K = -\frac{\sqrt{Bw^2 + 4 fr^2} - Bw}{2 fr}, & F \neq 0 \text{ and } -\frac{\sqrt{4 F^2 + B^2} - B}{2 F} \neq 0 \end{cases}$$

This formula is universal for Ohm's Law, and magnetism.

Ohm's Law: (b) = P-R; (f) = e; and (K) = i Magnetism: (b) = μ - ϵ ; (f) = t; and (K) = Z

$$+b, +f = (K);$$
 $-b, +f = (1/K);$ $-b, -f = (-1/K);$ $+b, -f = (-K)$

 $n \bullet K$ = the proportion of $(\infty \to n+b) = (n+b \to n)$; n/K = the proportion of $(1/\infty \to n-b) = (n-b \to n)$ where $n = a \bullet (-c)$; and b is positive.